where:

\[Y_c = \left(\frac{C_2}{2} + \frac{2}{C_1} \right) + \left(C_2 + C_i \right) \left(\frac{4}{C} + \frac{2}{s} \right) \]

(3-26)

\[C_i = \frac{g}{2} - k_j \]

(3-27)

\[C_2 = \frac{b_{fc} - g}{2} \]

(3-28)

\[s = \sqrt{\frac{C_1 C_2}{C_2 + 2C_1} \left(2b_{fc} - 4k_1 \right)} \]

(3-29)

If \(t_{fc} \) is less than the calculated value, a column with a thicker flange must be selected.

Step 8: Check column flange thickness for adequacy for beam flange compression according to the following:

\[t_{fc} > \frac{M_f}{\left(d_b - t_{fb} \right) \left(6k + 2t_{pl} + t_{bf} \right) F_{ye}} \]

(3-30)

where \(k \) is the \(k \)-distance of the column from the *AISC Manual*.

If \(t_{fc} \) is less than given by Equation 3-30, than beam flange continuity plates are required in accordance with Section 3.3.3.1.

Step 9: Check the panel zone shear capacity in accordance with Section 3.3.3.2. For purposes of this calculation, \(d_b \) may be taken as the distance from one edge of the end plate to the center of the beam flange at the opposite flange.

Step 10: Detail the connection as shown in Figure 3-13.