Outline of Japanese Design Specifications for Highway Bridges in 2012

Tetsurou KUWABARA (CAESAR,PWRI)
Takashi TAMAKOSHI (NILIM)
Jun MURAKOSHI (CESAR,PWRI)
Yoshitomi KIMURA (CESAR,PWRI)
Toshiaki NANAZAWA (CESAR,PWRI)
Jun-ichi HOSHIKUMA (CESAR,PWRI)
Background of Revision of Japanese Design Specifications for Highway Bridge

The 2002 Specifications

- Introduction of the performance-based design concept
- Improvement of the durability to design the sustainable bridges

✓ Accumulation of the technical research achievements in terms of safety, serviceability and durability of the bridges
✓ Lessons learned from the recent earthquake, the durability related damages of existing bridges
✓ Review of the damage estimation by the upcoming great earthquakes such as Tokai, Tonankai, and Nankai earthquake

The 2012 Specifications
Significant Points of the 2012 Specifications

✓ Improvement of the requirements for easy and secure maintenance

✓ Revision of design earthquake ground motions for interplate-type earthquake (Level 2 Type I earthquake)

✓ Introduction or improvement of specifications based on recent research achievements
 • Introduction of integral abutment bridge
 • Improvement of minimum thickness of steel deck plate to enhanced fatigue durability

etc…
The Number of Road Bridges Constructed in Past Years (2011)

*Bridge length is 15m or more

Reference: Technical Note of NILIM, No.645, July 2011
Fundamental Principal of Maintenance

Damage of bearings for water leakage around end of girders

Damage of expansion joint
Background

✓ Performance of bridges has changed by applying for various factors such as live load, seismic, environmental effects in their service period.

✓ To perceive change of bridge condition by bridge inspection is important to sustain the bridges for a long time.

✓ Most of existing bridges are difficult to inspect because they were designed without a view to inspecting.
Fundamental Principal of Maintenance

2012 Specifications

✓ Improve the requirements that structural systems which maintenance is expected to be difficult and insecure should be avoided.

✓ Bridges should be designed in consideration of maintenance methods such as periodic and emergency inspection, repair, retrofitted works easily and securely.
Example of providing the walkway

Example of strengthening of main girder in advance for temporary jack up
Revision of Design Earthquake Ground Motion

Design Earthquake Ground Motion

✓ Level 1: highly probable to occur during service period
✓ Level 2: high intensity with less probability to occur during the service period
 <Type I> Ground motion by large-scale interplate earthquake in the subduction area
 <Type II> Ground motion by near-field shallow earthquake

Background

The occurrence of great interplate earthquakes near Japan has been highly anticipated.

2012 Specifications

✓ Type I of Level 2 earthquake motion (for Interplate earthquake) was revised based on new attenuation relationships.
✓ Zone factors for Type I earthquake motion were revised.
Revision of Design Earthquake Ground Motion

Anticipated Interplate earthquake areas near Japan

- Off the Pacific coast of Hokkaido
- Off the Pacific coast of Tohoku
- Nankai trough
Revision of Design Earthquake Ground Motion

Development of new zone factor map

Zone (Zone Factor)
Revised Design Acceleration Response Spectra

Zone: A1 (Soil Profile Type III)

Revised Design Acceleration Response Spectra

Zone: B1 (Soil Profile Type III)

Previous (2002)

Revised (2012)
Design Considerations of Tsunami Effects

Superstructures inundated and washed away following failure of bearing supports.

Superstructures inundated but survived.
Design Considerations of Tsunami Effects

Background
Many bridges were washed away by extreme tsunami

2012 Specifications
- Local plan for disaster prevention shall be considered in planning of road network, structural planning and design of bridges

Recommendation
- For Prevention
 Securing of sufficient clearance for tsunami wave height
- For Mitigation
 Considerations in structural design to mitigate the tsunami-induced effect to bridges, and preparation of a recovery plan in advance
Experimental Approach to Study Behavior of Bearing Supports under Tsunami-induced Force

Experimental works to study

- Response of bearing supports under tsunami-induced force through 1/20-scaled flume test
- Resistant capacity of bearing supports under tsunami-induced force through 1/2-scaled static loading test
Observed Hydrodynamic Pressure

Flow pattern for 4-main girder bridge

Pressure unit converted to full scale
Introduction of Integral Abutment Bridges

Background
Maintenance related problems such as corrosion at the end of girder and bearing with most of existing bridges.

2012 Specifications
Introduced fundamental principal of design and construction of integral abutment bridges which systems are omitted the bearing and expansion joint.

Omitted
Expansion joint
Bearing

(a) Portal Frame Bridge
(b) Integral Abutment Bridge
Improvement of Fatigue Durability of Steel Deck Deck

Background
Fatigue cracks to penetrate a deck in a weld of closed rib and deck plate have been increased in the existing steel slabs.

2012 Specifications
Minimum thickness of deck plate where wheel load of heavy vehicle is always loaded is prescribed more than 16mm (previous: 12mm) in case of steel deck using closed rib.
The 2012 Design Specifications for Highway Bridges were revised about mainly:

- Designing the bridge with consideration of the maintenance and redundancy
- Revision of design ground motions for interplate-type earthquake
- Introduction or improvement of specifications based on recent research results

We continue to examine to introduce the load and resistance factor design concept for next revision.

T/C G initiates collaborative research program on tsunami effects on bridge performance.
Thank you for your kind attention
Standard Acceleration Response Spectra (Type I earthquake)

<table>
<thead>
<tr>
<th>Soil profile type</th>
<th>Type I</th>
<th>Type II</th>
<th>Type III</th>
</tr>
</thead>
</table>

- **Natural period (s)**
 - 0.1
 - 0.2
 - 0.5
 - 1
 - 2
 - 3
 - 5

Standard response acceleration (cm/s²)

- **Previous (2002)**
 - Graph showing standard response acceleration for different natural periods for Type I, II, and III soil profiles.

- **Revised (2012)**
 - Graph showing standard response acceleration for different natural periods for Type I, II, and III soil profiles.