DRIFT ISSUES OF TALL BUILDINGS DURING THE
MARCH 11, 2011 M9.0 EARTHQUAKE, JAPAN -
IMPLICATIONS
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Outline

« 1. Why this subject?

» Long-period ground motions due to earthquake at far distances
(long-period long-distance)

» Discussion of INTERRUPTED functionality of buildings at low
ground level input motions caused by event at far distances.

» Discussion of what may happen at larger input motions with
similar frequency content.

» Discussion of DRIFT RATIOS w.r.t. codes (Japan, USA, Chile)
« 2. Four cases:

» Building A (=770 km from epicenter)

» Building B (~350-375 km from epicenter)

» Buildings C & D (~350-375 km fro epicenter)
« 3.CONCLUSIONS



Background (Long Period/Long Distance Effects) 1/2

* One of the earliest observations in the United States was during the
M=7.3 Kern County earthquake of July 7, 1952, that shook many
taller buildings in Los Angeles and vicinity, about 100-150 km
away from the epicenter
(http://earthquake.usgs.gov/earthquakes/states/events/1952_07_21.php)

* One of the most dramatic examples of long-distance effects of
earthquakes is from the September 19, 1985, Michoacan, Mexico,
M 8.0 earthquake during which, at approximately 400 km from the
coastal epicenter, Mexico City suffered more destruction and
fatalities than the epicentral area due to amplification and
resonance (mostly around 2 sec) of the lakebed areas of Mexico
City (Anderson and others, 1986, Celebi and others, 1987).



http://earthquake.usgs.gov/earthquakes/states/events/1952_07_21.php
http://earthquake.usgs.gov/earthquakes/states/events/1952_07_21.php
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Tall Buildings Inventory Increasing!

« More and more taller RC buildings are designed/constructed
In the US as well as other parts of the world: Freedom
Tower In NYC, 92 story Trump Tower (Chicago), 828 m
tall Bhuj Tower in Dubai).Their performances are yet to be

assessed and/or observed'
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What Is the risk to tall buildings from earthquakes
originating at NMSZ or Charleston, SC or Cascadia
Subduction Zone? Should we consider what may happen to
tall buildings in Chicago, New York, Boston or Seattle?




Tall Buildings in Chicago, Boston"and'Seattlé

According to Wikipedia:
In Chicago: 72 bldgs taller than 555ft (168 m) [37-108] StOrIES
In Boston :27 buildings taller than 400 feet (120 m)-*
In Seattle, 15 buildings >400 ft(122m), 24 buildings>400 ft uncer constrrtction

« How will they perform during a strong event from distant Sources??? [pictures from Wikipedial




New Buildings in Los Angeles

From ASCE STRUCTURE Magazine, June 2012 (by R. Gerges, K. Benuska and C. Kumabe)
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Why important?
Potential Long Period/Long Distance Effects in the US (2/2)

 Tall buildings in Los Angeles area from Southern
California earthquakes,

 Tall buildings in Chicago from NMSZ,

 Tall buildings in Seattle (WA) area from large Cascadia
subduction zone earthquakes).

 Let us remember that the recent M=5.8 Virginia
earthquake of August 23, 2011 was felt in 21 states of
the Eastern and Central U.S., that include large cities
such as New York and Chicago
(http://earthquake.usgs.gov/earthquakes/eqinthenews/20
11/se082311a/#summary, July 15, 2011).



http://earthquake.usgs.gov/earthquakes/eqinthenews/2011/se082311a/
http://earthquake.usgs.gov/earthquakes/eqinthenews/2011/se082311a/

What about ground motions at long distances? Long
Periods in Osaka and Tokyo [Not surprising! In fact
MLIT report (Dec 2010) indicates awareness]
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Figure 1. (left) NS and EW acceleration response spectra and (right) velocity response spectra of ground
motions recorded at surface and downhole during Tohoku event at KIKNET OSKHO02 station in Osaka
Bay. Velocity response spectra exhibit the large amplitudes between 5-7 seconds.
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Figure 2. (left) NS and EW acceleration response spectra and (right) velocity response spectra of ground
motions recorded during Tohoku event at KNET TKY007 station in Shinjuku area of Tokyo where tall
buildings are concentrated. Velocity response spectra exhibit the large amplitudes particularly for periods
> 2 seconds.




Why Drift Ratio? Connection to Performance

« The most relevant parameter to assess performance is the
measurement or computation of actual or average story drift
ratios. Specifically, the drift ratios can be related to the
performance- based force-deformation curve hypothetically
represented in Figure 1 [modified from Figure C2-3 of
FEMA-274 (ATC 1997)]. When drift ratios, as computed
from relative displacements between consecutive floors,
are determined from measured responses of the building,
the performance and as such “damage state” of the building
can be estimated as in the figure (below).
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APPROACH 2: Displacement via Real-time Double Integration
[softwares are marketed...many applications, Celebi (2008)]
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DRIFT RATIO APPLICATIONS in CODES

Table 1. Upper Limits of Drift Ratios (Japan. Chile. USA. Turkey. New Zealand and Eurocode 8).

Code

Upper Linut
Drift Ratio (%)

Comment

Reference:

Chile

0.2

Results 1n elastic design

Nch433.0196 (1996)

Japan

1.0

Max for buildings taller than 60
m. For collapse prevention (level
2) motions

Building Center of Japan 2001a. b.

USA

No collapse state

ASCE7-10 (2007):

Turkey

Can be increased by 50 % 1n case
of some steel frames

DBYYHY (2007): Section 2.10.1.3.
Eqn: 2.19 in Turkish Code (2007)

New Zealand

NZS1170.5(2004)

Eurocode 8

for buildings having non-
structural elements fixed in a way
so as not to interfere with
structural deformations. or
without non-structural elements

Section 4.4.3.2. Eqn: 4.33
Eurocode 8 (2008)




Building A: ~77(
Building B:~350-3

Buildings C & D
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Building A; in Osaka Bay ~770 Km from &=

epicenter of March 11, 2011 main-shock ‘ ¢~
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Construction finished in 1995 (pre-1995 code,
pre-(KIK-NET/K-NET). Vertically irregular,
steel, moment-frame (rigid truss-beams/10
floor). No shear walls around elevator shafts
60-70 m long piles below foundation
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Site Info from OSKHO02 and building site
Indicate similarities and hence result In

similar site frequency as that of strong
shaking data [f(site)~0.13-0.17 Hz]
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System ldentification

ORIENTATION X[229] Y[319] TORSION
MODES 1 2 3 1 2 3 1 2
' SYSTEM IDENTIFICATION
MAINSHOCK [EVENT 1] (System Identification)
Freq(Hz) 0.1524 | 0.4887 | N/A | 0.1447 | 0.4264 | 0.7250
[T(s)] [6.56] | [2.05] [691] | [2.35] | [1.38]
Damping ( &) 0.012 | 0.020 0.016 | 0.001 | 0.020
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Design Analyses, Spectral Analyses & System

|[dentification [NOTE: LOW DAMPINGH

ORIENTATION X[229] Y[319] TORSION
MODES 1 2 3 1 2 3 1 2
ANALYSES DURING DESIGN

Freq(Hz) .1887 1724 2703

[T(s)] [5.3] [5.8] [3.7]
MAINSHOCK [EVENT 1] (Spectral Analyses)

Freq(HZ) 0.152 | 0.489 | 0.905 | 0.145 | 0.426 | 0.725 213 | .58

[T(s)] [6.58] | [2.06] | [1.11] | [6.90] | [2.34] | [1.38] | [4.69] | [1.72]

SYSTEM IDENTIFICATION
MAINSHOCK [EVENT 1] (System Identification)
Freq(Hz) 0.1524 | 0.4887 | N/A | 0.1447 | 0.4264 | 0.7250
[T(s)] [6.56] | [2.05] [691] | |2:35] | [1:38]
Damping ( &) 0.012 | 0.020 0.016 | 0.001 | 0.020




AVERAGE DRIFT RATIO

« Why average drift ratio?

e  Sparse instruments

e ~.005 (or ~.5%) drift ratio
(X-Dir)

o + Implications(!!): 3%g

Input motion, ~.5% drift

ratio: not-acceptable

MAINSHOCK [X: 229 DIRECTION]

AVERAGE DRIFT RATIO(%)

4007600 800 1000 200 600
TIME(S) TIME(S)




Building A:CONCLUSIONS AND REMEDIES

Building lost functionality for many days due to elevator cable entanglements
and other problems.

Resonance occurred and still occurs because f(building)~f(site)

Damping is too low [ambient tests could have provided some clues]

(average) Drift Ratios are high for a 3% g input motion. What if input a>.29?
Sparse instrumentation

Implications (US): tall buildings in Chicago, NY, Boston from far sources
Structural Response Modification Technologies (being designed — see below)
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Building B: 55-Story Shinjuku Center Building in
Shinjuku, Tokyo (~350-375 km from Epicenter)
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According to EERI Special Earthquake Report (EERI Newsletter, 2012), the 54-
story Shinjuku Center Building was constructed in 1979. The report states:
"The structure’s height is 223m, and the first natural period of the structure is
5.2 and 6.2 seconds in two perpendicular directions. The dampers were
calculated to have reduced the maximum accelerations by 30% and roof
displacement by 22% ™.



BUIIdlng B Shlnjuku Center Bmldlrg

 Figure courtesy of J. Moehle and Y. Sinozaki (Taisel Corp)
» Recorded first story acceleration (BLUE~max ~0.150).

Roof level displacement time history (RED : max~54 cm) Most notable
IS the long duration motion over 10 minutes.

AVERAGE DRIFT RATIO: 54/21600 = ~0.25% < 1% according to
Japanese practice.

However: the actual drift ratios computed from relative displacements
divided by story heights between some of the pairs of two consecutive
floors are certainly to be larger than the average drift ratio computed
using the maximum roof displacement divided by the height of the
building




Buildings C & D

Vertical sections showing instrumented floors of Building C (30 stories)
and Building D (28 stories) in Shinjuku area of Tokyo, Japan (Figure
adopted from Hisada and others (2012a and 2012Db).
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Average drift ratios computed from
recorded data of Building C and D.

KOGAKUIN UNIV. SHINJUKU BUILDING: MAINSHOCK [03111446]

~CH29)/118.6

e
. AVERAGE BETWEEN
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300 400 500 600
TIME(S)

AVERAGE DRIFT RATIO[%]

STEC BUILDING: MAINSHOCK [03111446]
: ~ NS1: (CH34-CH33)/89.95
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Bldg Epicentral Peak Accel. | Peak Accel. at No of | Rel. H (Ave)
Distance at ground top floor floors | Displ | Height | DR
(km) le\ el (gals) (gals) (cm) | (m) (%)

QUESTION: CLOSER LARGER INPUT
ACCELERATIONS WITH SIMILAR
FREQUENCY CONTENT — what happens?
Some GMPE computations suggest this Is possibie!



CONCLUSIONS (1/2)

1. For small ground level input ground motions as in the
two cases presented herein, these two tall buildings
deformed significantly to experience sizeable drift ratios.

2. Collection of such data Is essential (a) to assess the
effect of long period ground motions on long period
structures caused by sources at large distances, and (b) to
consider these effects and discuss whether the design
processes should consider reducing drift limits to more
realistic percentages (c) finally, further applications of
unique response modification features are feasible to
reduce the drift ratios.



CONCLUSIONS (2/2)

» 3. Behavior and performances of these particular tall
buildings far away from the strong shaking source of the
M9.0 Tohoku earthquake of 2011 and large magnitude
aftershocks should serve as a reminder that, in the United
States as well as in many other countries, risk to such
built environments from distant sources must always be
considered.

« 4, The risk from closer large-magnitude earthquakes that
could subject the buildings to larger peak input motions
(with similar frequency content) should be assessed In
light of the substantial drift ratios under the low peak
Input motions experienced during and following the
Tohoku earthquake of 2011.






