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ABSTRACT 
 
Aeroelastic coefficients of bridge decks (flutter 
derivatives) are fundamental for the assessment 
of bridge response to wind loading. Flutter 
derivatives are routinely extracted from wind 
tunnel section-model experiments. The results of 
the “United States - Japan Benchmark Study on 
Flutter Derivatives”, completed a few year ago, 
emphasized the relevance of experimental errors 
in the extraction of flutter derivatives from wind 
tunnel tests. Some of the experimental data and 
results from the US-Japan study are used in this 
paper to estimate the occurrence of flutter on two 
simulated bridge examples and to project the 
flutter probability on the expected “lifetime 
costs” for a full-scale structure. This analysis is 
carried out numerically. The simulations employ 
a recently-proposed framework for cost analysis 
on long-span bridges, induced by damages 
caused by high winds. 
 
Estimation of torsional-flutter probability is 
based on a scalar function with random 
coefficients in terms of mean wind speed, the 
roots of which correspond to the critical flutter 
velocity, developed in recent years by the 
authors. This probability is used, together with 
information on the probability of wind velocity at 
a given site, to predict the expected value of the 
lifetime cost due to flutter occurrence, using 
Monte-Carlo methods. 
 
KEYWORDS: long-span bridges, wind loading, 
aeroelasticity, torsional flutter probability, 
“lifetime cost analysis”. 
 

 
1.0  INTRODUCTION 
 
Flutter instability is of relevant to the design of 
long-span bridges since it can lead to structural 
failure. Flutter instability can be predicted by 
analyzing the aeroelastic coefficients of bridge 
decks or flutter derivatives (Scanlan and Tomko, 
1971). These are routinely extracted from section 
model tests in wind tunnel. As outlined by the 
recent results of the “US-Japan Benchmark Study 
on Flutter Derivatives” (Sarkar et. al, 2009; 
Caracoglia et al. 2009) experimental errors in the 
wind tunnel cannot be neglected. Recently, other 
investigators have emphasized the same problem 
and proposed a procedure for “error analysis” in 
wind tunnel (e.g., (Mannini and Bartoli, 2012)). 
As a result, even though structural reliability 
analysis against flutter, influenced by various 
error sources, is routinely carried out 
(Dragomirescu et al., 2003), a probabilistic 
analysis which rigorously account for 
measurement error sources in wind tunnel tests is 
still needed.  
 
The focus of this study is on torsional flutter (e.g., 
Simiu and Scanlan, 1996), which is a common 
aeroelastic instability mechanism for many 
long-span bridges. This phenomenon 
corresponds to a torsionally-driven unstable 
motion of the deck (Simiu and Scanlan, 1996); it 
is mainly associated with the diverging deck 
vibration in the fundamental torsional structural 
mode, which appears beyond a certain wind 
speed threshold, the critical flutter velocity. 
 
An approach for the derivation of the 
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torsional-flutter probability (TFP) for long-span 
bridges with moderate to highly bluff decks was 
recently investigated by the authors (Seo and 
Caracoglia, 2011). The approach makes use of an 
analytically-based and numerically-implemented 
algorithm for the solution of the critical wind 
velocity, which can be applied to both 
deterministic and probabilistic problems. This 
procedure models a selected group of flutter 
derivative curves using a second-order 
polynomial model as a function of the reduced 
velocity. These “model curves” enable the 
derivation of a scalar expression, from which the 
critical flutter velocity can be determined in 
simple form. 
 
In this study, a probabilistic analysis is initially 
carried out by Monte Carlo methods to determine 
the TFP of two simulated bridge examples. The 
data of the US-Japan study on flutter derivatives 
corresponding to a rectangular box with 
width-to-depth aspect ratio 2:1 are used to 
simulate the aeroelastic behavior of a “bluff 
deck”. The statistical properties (mean, 
variances) of the coefficients of the “model 
curves” are indirectly estimated from the data.  
 
The TFP is later used, together with information 
on the probability of the wind velocity at a given 
site, to predict the expected lifetime (repair) costs 
on a full-scale structure, accounting for the 
collapse due to the onset of flutter. A similar 
study on torsional flutter instability, which 
utilizes the randomization of Scanlan’s torsional 
flutter instability criterion (e.g., (Scanlan and 
Jones, 1990)) has been recently presented 
(Mannini and Bartoli, 2012). 
 
2.0 FLUTTER ANALYSIS: BACKGROUND 
 
The formulation of aeroelastic forces, employed 
in the study of torsional flutter, requires the use of 
the aeroelastic (motion-induced) overturning 
moment per unit length of the deck (Figure 1) as 
(e.g., Jones and Scanlan, 2001): 
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where B is the bridge deck width, U is the mean 
wind velocity,   is the air density, α represents 

pitching motion components and   is a time 
derivative. In Eq. (1) the effects of the heaving 
motion (h) and corresponding lift forces are 
neglected, due to the secondary influence on 
torsional flutter. Other force and displacement 
components can be usually neglected if the mode 
shape of the fundamental torsional deck mode, 
involved in the vibration, is primarily torsional 
with negligible influence of h and p components; 
for a more detailed discussion, the reader may 
refer, for example, to (Katsuchi et al., 1999).  
 
The torsional flutter derivatives in Eq. (1), A2

* 
and A3

*, are a function of the reduced frequency 
K B U  where 2 n   is the circular 

vibration frequency of vibration of the deck; this 
quantity is proportional to the reciprocal of the 
reduced velocity UR = 2π/K. 
 
The coupled-mode flutter problem (heaving and 
torsion modes) can be usually solved by means of 
an aeroelastically influenced eigenvalue problem 
(e.g., (Scanlan and Jones, 1990)) after 
representing the simple harmonic motion for both 
modes in terms of a critical reduced frequency 
ratio 

1tK K  ,with “t1” denoting the reduced 

frequency of the torsional mode. Flutter 
condition is found from the nontrivial solutions 
of a complex algebraic system of two equations 

( , )K  Ε ξ 0  (Jones and Scanlan, 2001). In the 

case of torsional flutter, dominated by mode “t1”, 
the flutter analysis can be reduced to the study of 
the term E2,2 of the matrix E. This term is: 
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In the previous equation 1i   , 1t  is the modal 

damping ratio of mode “t1” and 
1, 1t tG  is the 

modal integral of the α component of the purely 
torsional deck mode. Torsional flutter is 
determined from the vanishing of the real and 
imaginary parts of E2,2 (e.g., Jones and Scanlan, 
1990): 
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The expression (3a), denoted as

, 0 t I
, depends 

on K and is equivalent to a condition of zero 
damping. The quantity  t

 in Eq. (3a) is the 

inverse of the (squared) “reduced frequency 
ratio”, which must be determined from Eq. (3b). 
Torsional flutter velocity is found by inspecting 
the roots of Eq. (3a), 

, 0 t I
, after substitution of 

Eq. (3b). The largest of the roots in 
, 0 t I

 is the 

critical reduced frequency Kcr, from which the 
critical speed Ucr is found as 1

, 1 /cr t cr t crU B K   

with 
, 1 /t cr t crK K  . 

 
Two second-order polynomial curves (“model 
curves”) for A2

* and A3
* as a function of UR was 

proposed  to model the behavior of flutter 
derivatives (Seo and Caracoglia, 2012). These 
are: 
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where C1,…,C4 are four coefficients of the model, 
determined from the experimental data (Seo and 
Caracoglia, 2012).  
 
Equations (4a-4b) allow for the derivation of a 
simplified expression for Eq. (3a), which does 
not require “point-by-point” inspection of the 
data for A2

* and A3
*. If Eqs. (4) are used, the 

flutter problem is reduced to finding the roots of  
 

 
 

0.5
2

, 1 1 1 2 1, 1

2
1 3 4 1, 1,

2 1t I t t R R t t

t R R t tt I

q C U C U G

q C U C U G

     

 

  (5) 

 
The previous equation can be written in a 
compact form as 
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The constant parameters b1 to b5 are independent 
of UR and are related to C1,…,C4 from Eqs. (4a) 
and (4b): 
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The reduced velocity at flutter can be directly 
evaluated from 

, 0 t I
 and Eq. (6). The smallest 

real root(s) of Eq. (6) is UR,cr, the reduced critical 
velocity at flutter. From UR,cr, the critical flutter 
velocity can be determined from 

 , 2cr cr R crU BU  with critical pulsation 

 2
1 1 1 , 2 , 1, 1/ 1cr t t R cr R cr t tq C U C U G     and with 

1t  being the pulsation of mode “t1”.  

 
3.0  PROBABILISTIC FLUTTER ANALYSIS 
 
3.1. Flutter derivatives of a “closed-box 
rectangular deck” girder 
 
The flutter derivatives of a rectangular prism with 
an aspect ratio, width (B) to depth (D), B/D= 2:1, 
were employed (Fig. 2). Experimental data were 
derived from the results of the “US-Japan 
Benchmark Study on Bridge Flutter Derivatives” 
(Sarkar et al., 2009); such quantities were 
measured by Iowa State University in USA using 
the free-vibration method (Chowdhury and 
Sarkar, 2003) and by the Public Works Research 
Institute in Japan using the forced vibration 
method (Sato et al., 2004)). An “error analysis” 
was later conducted (Seo and Caracoglia, 2012) 
by also including other data sets, available from 
literature: “Matsumoto” (Matsumoto, 1996) and 
“Washizu” (Washizu et al., 1980). In all the tests, 
a section model undergoing 1DOF torsional 
vibration was used; the oscillation amplitude in 
wind tunnel was also the same (about 0.03 rad). 
 
In Fig. 2(a), the A2

* flutter derivative is depicted; 
the polynomial model in Eq. (4b), corresponding 
to the “average trend”, derived by data regression 
of the four data sets, is also shown. Similarly, Fig. 
2(b) summarizes the experimental data for A3

* 
along with the polynomial model in Eq. (4a). The 



 
4

two curves (thick solid lines), which were based 
on the “average” polynomial curves, were used in 
the probabilistic analysis. 
 
3.2. Randomization of the flutter-derivative 
model in Eqs. (4a-4b), limit-state function and 
TFP 
 
The TFP of a long-span bridge due to torsional 
flutter was derived by considering the following 
limit state function (“g function”): 
 
 g , .cr site cr siteU U U U   (8) 

 
where Ucr is the critical flutter speed, estimated 
through Eqs. (6-7); Usite is the extreme-value 
wind speed at the bridge site (annual maxima), 
which was taken as always orthogonal to the 
bridge axis as a first approximation. 
 
The quantity Ucr is a random variable since 
measurement errors in A2

* and A3
* can be 

projected by “randomization” of the coefficients 
C1,...,C4 in Eq. (4) and Eq. (6). The mean values 
of these coefficients coincide with the 
coefficients of the “average” model curves in Fig. 
2, whereas the second-moments statistics were 
estimated from the four data sets in Fig. 2, as 
described in Seo and Caracoglia (2011). Since 
Ucr is a nonlinear function of C1,...,C4 (from Eq. 
6) an analytical expression of the g function in a 
simple form was not possible.  
 
The limit-state flutter function was implemented 
by considering A2

* and A3
* in Eqs. (4a) and (4b) 

as two independent random functions. 
Propagation of uncertainty was simulated by 
treating each of the coefficients in the two 
polynomials as random parameters with 
dependency between C1 and C2, and C3 and C4. 
The random coefficients C1 through C4 were 
treated as both normally distributed and 
log-normally distributed (jointly). The 
expectations of C1,…,C4 were based on the 
“average” values of the model curves (thick solid 
lines in Fig. 2). 
 
The flutter probability Pf can be assessed from 
Eq. (8) for g≤0 (Bucher, 2009). This probability 

was estimated by applying Monte Carlo methods 
(Bucher, 2009; Grigoriu, 2002) to find Ucr with 
random C1,…,C4, together with the random Usite. 
A large sample of computer generated events 
( 55 10 ) was used to estimate flutter probabilities. 
The same first and second order statistical 
moments were applied to the simulations 
utilizing normal and log-normal distributions for 
C1,…,C4. 
 
4.0 TFP RESULTS 
 
The two case studies were derived from a set of 
simulated bridge examples. The first structure 
(“Bridge 1”) was modeled after the Golden Gate 
Bridge in San Francisco, California (USA), with 
main span ℓ = 1200 m, deck width B = 28 m, deck 
torsional inertia I0 = 4.4×106 kg×m2/m (Jain et al., 
1996). The torsional deck mode (“t1”) is 
skew-symmetric with frequency 0.192 Hz. 
 
The second case (“Bridge 2”) was based on the 
structural properties of the Tsurumi Fairway 
Bridge, located in Japan, with  ℓ = 500 m, B = 38 
m, I0 = 2.8×106 kg×m2/m. Analyses employed the 
first symmetric torsional mode with frequency 
0.50 Hz (Sarkar, 1992). 
 
In order to analyze the effects of a partial 
correlation between C1, C2 and C3, C4, on 
torsional flutter a sensitivity analysis was 
performed by varying the coefficients of 
correlation (

1 2,C C  and 
3 4,C C ) between 0 and 1.0.  

 
Figure 3(a) shows the generalized safety index 

 1 1 fP     for Bridge 1 as a function of 

3 4,C C , with Φ being the standard Gaussian 

cumulative density function. The histograms 
compare the numerical results obtained by MC 
methods. Both jointly Gaussian (N) and jointly 
log-normal (LN) parameters C1,…,C4, are shown. 
 
Figure 3(b) summarizes the results of the 
probability analysis for Bridge 2. As anticipated, 
a “bluff” deck cross-section on a shorter span 
bridge results in a drastic decrement in flutter 
probability. An increment in the safety index 
equal to four times or more can be observed for 
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both distributions of the random coefficients, for 
example from the comparison of Fig. 3(b) with 
Fig. 3(a) for jointly-Gaussian C1,…,C4.  
 
The comparison of Figs. 3(a) and 3(b) also 
suggests that, if a target safety index β = 3.5 was 
employed, Bridge 1 would be deficient, while the 
use of a “bluff” rectangular section for Bridge 2 
would still be acceptable. 
 
5.0 EXPECTED LIFETIME COST, BASED ON 
TFP 
 
Over a time period (t, in years), which may be the 
design life of a new bridge or the remaining life 
of an existing structure, the expected total cost 
due to wind-induced damages can be expressed 
as (Wen and Kang, 2001): 
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  (9) 

 
where E[] denotes expected value; C0 is the initial 
construction cost of the structure; i is an index 
describing each severe loading occurrence; ti ≤ t 
is the loading occurrence time of event “i”, a 
random variable. Moreover, N(t) is the total 
number of wind damaging events over time t; Cj 
is the cost in present dollar value of j-th limit state 
being reached at time ti of the loading occurrence; 
e-λti is the “discounted factor” (Wen and Kang, 
2001) of Cj over time t; λ is a constant discount 
rate per year; Pj is the probability of occurrence 
for limit state j, assumed as a constant over time; 
the integer index k is the total number of limit 
states under consideration. In the case that the 
repair cost is exclusively affected by the flutter 
limit-state, Eq. (9) can be simplified using k=j=1 
and Pj=Pf. The expected value of the “lifetime 
cost", induced by TFP, normalized with respect 
to the initial construction cost C0, is 
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In Eq. (10) the expected relative cost CF,E 

accounts for the number of occurrences of 
moderate to large wind storms based on the 
Poisson counting Process N(t) with mean 

occurrence rate equal to 0.01 (as an example), 
which has a chance of occurring once every one 
hundred years. 
 
Figure 4(a) presents the influence of 

3 4,C C  on the 

expected lifetime relative cost for Bridge 1, t=50 
years in Fig. 4. The bar charts compare the 
numerical results obtained by Eq. (10). In Fig. 
4(a) the expected lifetime costs, calculated for 
both jointly Gaussian and jointly log-normal 
random coefficients C1,…,C4, are shown. The 
expected cost CF,E is three times larger than the 
construction cost for most cases; this results is 
dictated by the large values of Pf and low β in Fig. 
3(a).  
 
Figure 4(b) summarizes the results of the cost 
analysis for Bridge 2. The “closed-box 
rectangular deck” used on a shorter span bridge 
results in a sensitive diminution in the expected 
lifetime cost. The expected cost based on TFP 
relative to construction cost is minimal in this 
case; it is less than 1.1 times the initial cost after 
t=50 years for all cases.  
 
6.0 SUMMARY 
 
This study employs some of the data of the “US 
- Japan Benchmark Study on Flutter Derivatives” 
to derive the expected lifetime relative cost, 
induced by wind damages due to bridge flutter on 
two simulated long-span bridge cases (central 
span length 1200 m and 500 m). Random 
experimental errors, associated with the 
measurement of the flutter derivatives in wind 
tunnel, were considered in the simulations.  
 
The results of the torsional probability 
investigation for both bridge models, equipped 
with a closed-box rectangular deck girder, 
suggested a significant variability in the safety 
indices A relative difference between two to three 
times was noticed among the various cases. 
 
The results of the cost analysis are preliminary. 
Even though the aeroelastic properties of an 
unrealistically bluff deck were used, it is 
suggested that the expected costs due 
wind-induced damages cannot be neglected over 
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time even for a relatively short-term “exposure”. 
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(a) 
 
 

127.0 mm

63.5 mm

(b) 
Figure 1: (a) Description of degrees of freedom and aeroelastic forces on a bridge deck (p and h 

component neglected); (b) rectangular box section (“closed-box rectangular deck”) with B/D = 2:1 
used by the US-Japan Benchmark Study on Flutter Derivatives (measurements refer to the 

section-model tested at Iowa State University). 
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Figure 2: (a) Flutter derivatives A2

* (a) and A3
* (b) of the closed-box rectangular deck with aspect 

ratio B/D = 2:1, employed in torsional flutter analyses. The four data sets labeled as “Sato”, “ISU”, 
“Matsumoto” and “Washizu” were reproduced from (Sarkar et al., 2009). The “Polynomial Model” 

was derived by regression of the four data sets. 
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Figure 3: Safety indices β for closed-box rectangular deck (FD in Fig. 2) for jointly-Gaussian (N) 
and log-normal (LN) random coefficients C1,…,C4, as a function of the 

3 4,C C correlation 

coefficient: (a) Bridge 1; (b) Bridge 2.  
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Figure 4: Expected lifetime relative cost after 50 years due to torsional-flutter probability damage, 
for jointly-normal (N) and jointly-log-normal (LN) random coefficients C1,…,C4, as a function of 

the 
3 4,C C correlation coefficient: (a) Bridge 1; (b) Bridge 2. 

 


